الأربعاء، 18 أبريل 2012

الذكاء الاصطناعي : يمكن تعريف الذكاء الاصطناعي للحاسب الآلي بأنه القدرة على تمثيل نماذج محاسبية ( Computer Models ) لمجال من مجالات الحياة وتحديد العلاقات الأساسية بين عناصره ، ومن ثم استحداث ردود الفعل التي تتناسب مع أحداث ومواقف هذا المجال ، فالذكاء الاصطناعي بالتالي مرتبط أولاً بتمثيل نموذج محاسبي لمجال من المجالات ، ومن ثم استرجاعه وتطويره ، ومرتبط ثانياً بمقارنته مع مواقف وأحدث مجال البحث للخروج باستنتاجات مفيدة ، ويتضح أن الفرق بين تعريفي الذكاء الاصطناعي والإنساني المذكورين أعلاه هو أولاً القدرة على استحداث النموذج فالإنسان قادر على اختراع وابتكار هذا النموذج ، في حين أن النموذج المحاسبي هو تمثيل لنموذج سبق استحداثه في ذهن الإنسان ، وثانياً في أنواع الاستنتاجات التي يمكن استخلاصها من النموذج فالإنسان قادر على استعمال أنواع مختلفة من العمليات الذهنية مثل الابتكار ( Innovation ) والاختراع ( Creativity ) والاستنتاج بأنواعه ( Reasoning ) في حين أن العمليات المحاسبية تقتصر على استنتاجات محدودة طبقاً لبديهيات وقوانين متعارف عليها يتم برمجتها في البرامج نفسها.
ويتركز أصل علم الذكاء الاصطناعي في أبحاث بحتة ونظرية تدرس أساليب تمثيل النماذج في ذاكرة الحاسب الآلي ( Model Representation ) وطرق البحث والتطابق بين عناصرها ( Search & Match Methods ) واختزال أهداف بها ( Goal reduction ) وإجراء أنواع الاستنتاجات المختلفة (Reasoning ) مثل الاستنتاج عن طريق المنطق ( Logic ) أو عن طريق المقارنة ( Analogy ) أو عن طريق الاستقراء ( Induction ).
ومن أهم أساليب تمثيل هذه النماذج هو استخدام القوانين ( Rules ) التي تحكم مجالا من المجالات ، فلو كانت أنواع الفاكهة مثلاً هي مجال بحثنا فإنه يمكننا كتابة القانون التالي إذا كان النبات فاكهة وكان لونها أحمر فهي غالباً تفاح ويحتوي هذا القانون على قسمين : القسم الشرطي (Premise ) المتمثل في " إذا كان النبات فاكهة وكان لونها أحمر والقسم الاستنتاجي أو الفعلي ( Action ) المتمثل في فهي غالباً تفاح.
وباستخدام عدد كبير من هذه القوانين عن موضوع معين فإننا ننشئ نموذجاً ضمنياً يخزن الحقائق عن موضوع البحث ، ويمكن استخدامه في التعامل مع الأحداث والخروج باستنتاجات عن موضوع البحث ، ويعتبر هذا النوع من التمثيل من الأساليب الشائعة نظراً لسهولة تطبيقه إلا أنه يعتبر تمثيلاً بسيطاً ولكن يعجز في كثير من الأحيان عن تمثيل جميع أنواع النماذج واستخراج جميع أنواع الاستنتاجات المعروفة.
ويعتبر أسلوب شبكات المعاني ( Semantic Networks ) أيضاً من الأساليب الشائعة في تمثيل النماذج وهو يتخلص في إنشاء شبكة من العلاقات بين عناصر النموذج. أما ثالث أنواع أساليب التمثيل الشائعة فهو ما يسمى بتمثيل الإطارات (frame Representation ) والذي يمكن اعتباره نوعاً خاصاً من تمثيل شبكات المعاني.


ونتج من معامل أبحاث الذكاء الاصطناعي تقنيات عديدة مازال بعضها في الأطوار الأولى من الدراسة والبحث ، في حين وصل البعض الآخر إلى نضج نسبي أدى إلى تطوير أنظمة جديدة عملية تعالج مشاكل واقعية كان يعتبر من المستحيل معالجتها بأساليب البرمجة التقليدية ، ويعتبر مجال " الذراع الآلية الذكية ( Smart Robot ) وأنظمة الخبراء ( Expert Systems ) أهم مجالين من هذه المجالات وفيما يلي نبذة مبسطة لهاتين التقنيتين وإمكاناتهما:

الذراع الآلية الذكية : استخدمت الذراع الآلية مؤخراً في المصانع للقيام بالأعمال الروتينية التي تحتاج إلى قوة عضلية ولا تتطلب عمليات أو أنشطة ذهنية معقدة مثل عمليات اللحام والدهان في مصانع السيارات. وقد اعتمد تشغيل هذه الأذرعة على دقة وسرعة أنظمة التحكم ( Control Systems ) التي تعمل بواسطة أجهزة الحاسب الآلي ، وكان اليابانيون أول من استعمل هذه الأذرعة بصورة موسعة في صناعة السيارات والذي نتج عنه غزو اليابان للأسواق العالمية بسيارات ذات جودة عالية وأسعار منافسة.
ولا تستخدم الأذرعة الآلية في التصنيع فوائد عديدة فهي لا تطالب بإجازات أسبوعية أو سنوية أو عرضية ولاتكل ولا تتعب من العمل ولا تتوقف إلا لفترات الصيانة ، كما أنها تستطيع العمل في مصانع غير مكيفة أو مضاءة إضاءة غير قوية ، وفي هذا توفير للطاقة ، ثم إنها لا ترفع الدعاوي ، ولا تطالب بتعويضات إذا تعرضت خطأ أو عمداً إلى غازات سامة أو مواد كيماوية ضارة ، وأخيراً فهي لا تحتاج إلى مرافق مساندة مثل دور الحضانة وصالات الطعام والصالات الرياضية وغيرها مما يطالب به العمال ، وليس من الصعب طبعاً ترجمة كل هذه المزايا إلى توفير كبير في تكلفة الإنتاج وفي السيطرة على الطاقة الإنتاجية للمصانع بحيث تتناسب مع قوى العرض والطلب للسوق ، وذلك بدون اللجوء إلى تسريح العمال لبضعة أسابيع أو شهور أو في وضع ورديات إضافية.


ومع تطور أنظمة التحكم الآلية وازدياد قدرة الحاسبات الآلية التي تشغلها ازدادت قدرات الذراع الآلية وأصبحت تقوم بأعمال دقيقة ومركبة كصنع شرائح الميكرو كمبيوتر وغيرها من الأعمال التي تتطلب أنظمة تحكم معقدة وصعبة ، إلا أن هذه الأعمال كانت محدودة بما يمكن إنجازه باستخدام أساليب البرمجة التقليدية وقد أدى إدخال أساليب الذكاء الاصطناعي في برمجة هذه الأذرع إلى فتح أفاق جديدة لم تكن ممكنة من قبل ، فأصبحنا اليوم نتكلم عن أذرع تستعمل الرؤية الإلكترونية ( Electronic Vision ) في فرز المنتجات وفي تحريك الذراع ( أو عدة أذرع ) في حيز ضيق بأسلوب مرن يتناسب مع متغيرات البيئة التي يعمل بها . ويتلخص أسلوب الرؤية الإلكترونية في تحويل الصورة الإلكترونية المكونة من نقاط ( Pixels ) سوداء أو بيضاء إلى خطوط وأضلاع متصلة لتكوين صورة ، ثم مقارنة خصائص الصورة الناتجة بالنماذج المخزونة سابقاً في الجهاز. ويمكن بهذه الطريقة التعرف مثلاً على صورة الطائرة من أجنحتها وذيلها ، وتمييز المطار بمدرجات إقلاع الطائرات ، والمسجد من مئذنته وهكذا وتتمثل صعوبة الرؤية الإلكترونية في اختلاف الصورة مع اختلاف الإضاءة المسلطة على الجسم ووقوع الظل على أجزاء منه ، ولتقنية الرؤية الإلكترونية تطبيقات عديدة في مجالات توجيه الصواريخ والطائرات والتوابع ( الأقمار الصناعية ) ومجالات التجسس بالإضافة طبعاً لمجال الأذرع الآلية.

ومن أشهر الأنظمة التي تستعمل الرؤية الإلكترونية في المجال الصناعي هو نظام كون سيت Consight المستخدم الآن في شركة جنرال موتورز للسيارات بكندا والذي يسمح للذراع الآلية الذكية بفرز قوالب محركات السيارة " Engine Casts " أثناء مرورها أمامه على الحزام المتحرك تحت إضاءة معينة . وبعد تحليل الضوء تقوم الذراع باستخراج القوالب التي لاتتفق والمواصفات المطلوبة.

ويمثل استعمال أكثر من ذراع واحدة في حيز ضيق صعوبة فنية كبيرة نظراً لخطورة اصطدام بعضها ببعض ، كما أن التنسيق بينها في التعاون على إنجاز عمل ما له مشاكله الفنية نظراً لضرورة متابعة كل ذراع وما يقوم به من عمل بالإضافة إلى ما أنجز غيره من أعمال . وقد أقتصر استعمال الأذرع الآلية إلى عهد قريب على استخدام كل ذراع على حدة ، حيث أن استخدام أكثر من زراع واحدة في إنجاز مهمة مركبة يحتاج إلى أنظمة آلية جديدة ومعقدة تقوم برسم الخطة العامة للحركة وتقوم باستنتاج الخطوات المنطقية التي يجب أن تنفذها كل ذراع ، وبالتالي فهي أنظمة تحتاج إلى الذكاء الاصطناعي وأساليبه في استحداث نماذج محاسبية للبيئة وتخزين قوانين وأسس الحركة المطلوبة ورغم ظهور بعض الأنظمة الآلية تمكن الذراع الآلية من الحركة الذاتية مثل نظام " ستربس Strips " إلا أن معظم هذه الأنظمة ما زال في أطوار البحث والتطوير

ليست هناك تعليقات:

إرسال تعليق